Orbit functions of SU(n) and Chebyshev polynomials
نویسنده
چکیده
Orbit functions of a simple Lie group/Lie algebra L consist of exponential functions summed up over the Weyl group of L. They are labeled by the highest weights of irreducible finite dimensional representations of L. They are of three types: C-, Sand E-functions. Orbit functions of the Lie algebras An, or equivalently, of the Lie group SU(n+1), are considered. First, orbit functions in two different bases – one orthonormal, the other given by the simple roots of SU(n) – are written using the isomorphism of the permutation group of n elements and the Weyl group of SU(n). Secondly, it is demonstrated that there is a one-to-one correspondence between classical Chebyshev polynomials of the first and second kind, and Cand S-functions of the simple Lie group SU(2). It is then shown that the well-known orbit functions of SU(n) are straightforward generalizations of Chebyshev polynomials to n − 1 variables. Properties of the orbit functions provide a wealth of properties of the polynomials. Finally, multivariate exponential functions are considered, and their connection with orbit functions of SU(n) is established.
منابع مشابه
A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کاملActa Polytechnica
The aim of this paper is to make an explicit link between the Weyl-orbit functions and the corresponding polynomials, on the one hand, and to several other families of special functions and orthogonal polynomials on the other. The cornerstone is the connection that is made between the one-variable orbit functions of A1 and the four kinds of Chebyshev polynomials. It is shown that there exists a...
متن کاملThe operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications
In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملSolving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method
In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method
متن کامل